

Shapeoko CNC router

Brian Paavo, 9 Aug 2012, Dspace.org.nz

Thank you Paul!

The Chat
● CAD/CAM Software tool chain (the long part)

– output modification
– development suggestions

● Bits
● Materials
● Process
● Limitations & upgrades

Software Toolchain
● Solidworks, Blender,

Sketchup*, FreeCAD, etc.
● Design an .stl object (* requires a

separate tool chain than I describe here as it doesn't
export .stl)

-Base should be on Front plane
-Don't forget case-sensitive .stl vs .STL files for later software.

Software Toolchain
● Solidworks, Blender,

Sketchup*, FreeCAD, etc.
● Design an .stl object (* requires a

separate tool chain than I describe here as it doesn't
export .stl)

 OR, if engraving is your
goal,

● produce a simplified .dxf
(2D) drawing.

-Base should be on Front plane
-Don't forget case-sensitive .dxf vs .DXF files for later
software.

Software Toolchain
● Solidworks, Blender,

Sketchup*, FreeCAD, etc.
● Trim/repair object in Netfabb

(optional, yes, you can use free version)

● Design an .stl object (* requires a
separate tool chain than I describe here as it doesn't
export .stl)

● Very occasionally .stl files contain vertices
outside the model boundaries, which will
confuse simple X, Y, Z robots

Netfabb also
allows you to
specify .stl file
save in binary or
ascii formats and
tags appropriately.
The next steps
can't resolve some
CAD tags
unambiguously.

Software Toolchain
● Solidworks, Blender,

Sketchup*, FreeCAD, etc.
● Trim/repair object in Netfabb

(optional, yes, you can use free version)

● Slice the object using
PyCAM (others available open source or
cost, e.g. CAMBam $125)

● Design an .stl object (* requires a
separate tool chain than I describe here as it doesn't
export .stl)

● Very occasionally .stl files contain vertices
outside the model boundaries, which will
confuse simple X, Y, Z robots

● Generates tool paths in finite space as
simple text files (g-codes, familiar to
Reprap users).

Most of your job
decisions have to be
made here.
 -Define Z=0 (preferably
>0mm above model and
material), by shifting
MODEL relative to Z
origin.

- add bridges (sprue) if
you're going to cut
through your material
completely

- Choose your bit geometry (cylinder, sphere,
toroid) and diameter (critical that you verify
later, PyCAM sometimes forgets your choice).

-Ignore feed and speed as Arduino won't
understand them and you need to modify later.

- Define your process. PyCAM is based on the
notion that you'll do several passes on any 3D
model

1st: remove most material
2nd: carefully cut contours
3rd: surface finish

Slice removal is simple-grid based.
Contour (follow) is detailed cutting (normal)
Surface is plunging.
Engraving is contour (centre of the tool).

Typically you'd want <50% overlap for most bit
and non-powdering material combinations.
CAREFULLY consider max. step down after
experimenting on the material/router yourself.

- Define your process. PyCAM is based on the
notion that you'll do several passes on any 3D
model

1st: remove most material
2nd: carefully cut contours
3rd: surface finish

Slice removal is simple-grid based.
Contour (follow) is detailed cutting (normal)
Surface is plunging.
Engraving is contour (centre of the tool).

Typically you'd want <50% overlap for most bit
and non-powdering material combinations.
CAREFULLY consider max. step down after
experimenting on the material/router yourself.

Incidentally, the most important SETTING is safe-
travel Z height at which the tool can travel at top
speed unobstructed. Too high a value (e.g. 25
mm) extends job time a lot, too low and you either
ruin your job or break stuff.

- Bounds are what you'd expect. Relative margin
is relative to the origin.

Tasks Tab

Choose only ONE tool path at a time for the
Shapeoko.

Verify your bit and process for the task you
choose.

Generate Toolpath. Here is where PyCAM's
shortfall becomes apparent. Note that I simplified
this model to only 988 triangles from the original
model with 6,500. This model takes a minute or
so to generate a 50% overlap toolpath in a grid
pattern on a 2.8GHz duo-core running Python 2.7
in WinXP. The original model failed after
completing 10 of 11 slices after 10 hours of
processing.

After your toolpath is generated you absolutely
should use the SIMULATE button that pops up so
you can see how the tool tip will move relative to
the model so that you can prevent problems and
ensure that the task is what you really wanted to
do (i.e. remember 'follow contour' assumes you've
already removed most material).

Software Toolchain
● Solidworks, Blender,

Sketchup*, FreeCAD, etc.
● Trim the object in Netfabb

(optional, yes, you can use free version)

● Slice the object using
PyCAM (others available open source or
cost, e.g. CAMBam $125)

● Simultaneously use a g-code
streamer (e.g. Universal G-Code Streamer

in Java) which is received by
GRBL running on the
Arduino

● Design an .stl object (* requires a
separate tool chain than I describe here as it doesn't
export .stl)

● Very occasionally .stl files contain vertices
outside the model boundaries, which will
confuse simple X, Y, Z robots

● Generates tool paths in finite space as
simple text files (g-codes, familiar to
Reprap users).

● You can use UGcS as a straight serial
terminal to zero the tool tip and read
machine parameters. UGcS sends
commands in small chunks to not
overload Arduino buffer and receives 'OK'
from completed commands to follow job
progress.

Except for intentional upgrades, we want
GRBL to remain stable on the Arduino so
no need to access Shapeoko with the
Arduino IDE.

We all know to expect life to not be
easy. PyCAM is a neat utility, but it is
in development and not designed
specifically for the Shapeoko, so you
must edit your g-code (.ngc) text file.
It's not as bad as it sounds when you
use find/replace.

- Remove all commands that confuse
and/or fill up the Arduino buffer:

1) anything starting with ;
2) Any commands other than

 G0,G1,X,Y,Z, P

Add these lines to the end of your
gcode.
G0 Z5.000 (or whatever your safety height is)
G1 X0.000
G1 Y0.000

So your tool returns to home ready for
the next pass (otherwise you'll lose
your place).

Bits
As you'd expect, the choice of bit affects your final product look. Compared to manual
use of the router, you must consider that you have FAR less lateral pressure at your
disposal so bit sharpness is key (i.e. carbide bits probably better than HSS in most
cases). Choose your bits with consideration of your material and the bits ability to
plunge.

Materials
Construction material will be foremost
in your mind from the very first step.
You can modify your spindle speed
and tool feed within certain limits, but
most “Dremel” bits cut using high
speed rather than awesome bit
geometries.

If you're using plastic and you're
melting instead of cutting, lower your
feed rate. If the cutter is sticking in
the groove it's milling, then decrease
speed or increase feed.

In my limited experience with the
Shapeoko, I suspect the following
operational envelopes contrary to
advert.
Profile cutting
Drilling
Milling

If it lives here I recommend continuing the material/feed/speed table I've started.

Process with Current Machine
1) Mount and level raw material on table, manually move your tool over surface to ensure you don't dig in

before powering up electronics.
2) Prepare g-code file as discussed
3) Start up UGcS
4) Connect to comport (4 on this laptop)
5) Issue serial command $ to get current Arduino values, set feed and travel rates as appropriate $4=100

means feedrate while cutting of 100 mm/minute. $5=1000 means travel rate of 1000 mm/minute at safe-
height.

6) Move tool head to appropriate lateral home by issuing X100, Y100, etc. commands, remember values are
cartesian from origin NOT steps

7) Move tool head to level you decided in PyCAM. I recommend using either locating at 0, sliding paper
underneath and step to it in 0.25 mm increments OR (better) step to a soft nylon or acetal surface 3.0 mm
above your material.

8) Hit the Reset / Zero button on Arduino shield
9) Use the file feed pane on UGcS to load your file
10) Power on router
11) 'Send' file
12) Supervise
13) Router will complete what's in the buffer
even if you hit cancel or pause in the software.

Reset / Zero

Modifications
 Some people have made cool things with Shapeoko, but after playing with it

myself several modifications come to mind. It turns out that most of the cool
stuff was built with machines similarly modified or very careful choice of
materials.

Modifications
 Some obvious python ones from tool chain biggest being invalid GRBL

commands and rehoming on milling tasks, but in terms of hardware:
 ---------- Easy ----------
1) X,Y home switches (electronics/GRBL ready for them) I brought some in if

someone wants to add them.
2) Remote Z home switch (easily printed with Reprap)
3) Makerslide particle baffle or extraction system
4) Right angles to stiffen gantry movements (lag is considerable)
5) Level base and improve clamping (v-grooves maybe)
6) Make sound-dampening box
7) Rewire friggin' crash switch
8) Upgrade router

--- Hard ---
1) Spring-load idlers for variable tension
2) Gear down or upgrade steppers for
 better torque.
3) Swing Z or tool change head

Others?

