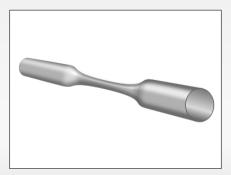
Electronics 1

- Voltage/Current
- Resistors
- Capacitors
- Inductors
- Transistors


Voltage and Current

 Simple circuit – a battery pushes some electrons around the circuit – how many per second?

Water

- The easiest way to think of this simple circuit is as water flowing through pipes
- Voltage is the same as the water pressure
- Current is the amount of water (electrons) flowing through around the circuit
- Resistance is like a constriction in the flow

Ohm's Law

There's a simple relationship:

$$V = IR \text{ or } I = V/R \text{ or } R = V/I$$

Know any two you can figure out the other

Demonstration

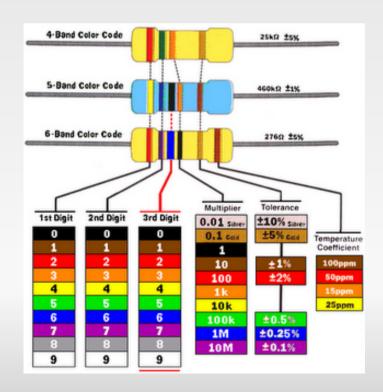
Go to (you will need java):

http://www.falstad.com/circuit/e-index.html

- Bookmark it!
- Click on "ohm's law"
- You can see how for a fixed voltage the amount of current depends on the resistance (click on a resistor, change it)

Voltage

- Voltage is the pressure on the electrons around a circuit – the higher the voltage the more push they get
- High voltages (100v or more) are dangerous and can cause death
- 1000v or more can cause arcing
- Common voltages are what you have in a battery – or 5 or 3.3v for logic families


Current

- Current is related to how many electrons are passing a particular spot in a second
- 1 amp is a high current if you have an amp or more somewhere in your circuit something is getting hot

Safety

- The human body has a relatively high resistance
 - "it's the volts that jolts and the mills that kills"
- Voltage wont actually kill you, but it's what will make you feel a shock (you wont feel a DC shock as an ongoing shock, while you cook)
- Current through the body, especially across the heart is what will kill you – it only takes a few milliamps

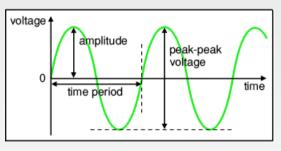
- Limit current flow
- Are measured in "ohms"
- Come in lots of shapes and sizes
- Colour codes tell us how big

- Resistors also come in power and voltage ratings
- Power P = VI = $I^2R = V^2/R$ (again know any 2 ..)

if your resistor turns into a smoking piece of carbon you probably need one with a higher power rating

 Voltage ratings have to do with breakdown (arcing) only an issue of you're playing with dangerous voltages

- If you connect resistors in series the resulting resistance is the sum of the two resistor's values
- If you connect them in parallel the resulting value is complicated (I promised little math) but if they are both the same the result is the same as a resistor of half the value
- Try the "resistors" demo


- With two resistors in series the voltage in the middle is proportional to the ratio of the two resistors
- Click on the "voltage divider" demo
- Right click on some resistors to muck with their values

Polarity

- Positive charges (an absence of electrons) and negative charges (too many electrons) kind of work the same way
- Due to a lot of history before people worked out how electritity we often end up thinking of currents flowing from positive to negative (even though the electrons really move the other way)
- It doesn't really matter

DC vs AC

- A DC voltage is a fixed voltage that doesn't change
- An AC voltage is one that changes continually, usually represented as a sine wave with a fixed frequency:

Complex waveforms are a mix of frequencies

AC vs. DC 2

- Often we see a mix of a DC voltage and an AC voltage
- On a 'scope they look like an AC signal with an offset from 0

Capacitors

- Block DC (infinite resistance)
- Pass AC
- 'resistance' to AC inversely proportional to value and to frequency (we say 'impedance' rather than 'resistance' here)
- Measured in "farads" a farad is a lot, we normally use nano and micro farads
- Stores energy using an internal electric field

Capacitors 2

- Come in lots of types
- Small ones (disc ceramic) are pretty rugged
- Bigger ones tend to be voltage limited (electrolytics) and physically big
- Specialty ones for high voltages, high reliability, larger temperature ranges, higher frequencies

Capactitors 3

- Used for three main things:
 - Blocking DC voltages
 - Smoothing AC from DC rails
 - Frequency sensitive circuits

Capacitors 4

- An ideal capacitor will charge infinitely fast
- The real world always has resistance capacitors charge and discharge at a rate proportional to the R and C in a circuit
- Click on the "capacitor" demo
- Now look at the "AC response" demo see how the current lags the voltage

Capacitors 5

- You calculate the AC impedance values of capacitors in parallel by adding the values together
- The rules for capacitors in series is the same as for resistors in parallel

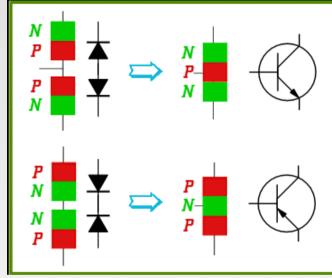
- Store energy in a magnetic field when a current is flowing
- Pass DC with close to 0 resistance
- Tend to block AC resists AC current changes
- 'resistance' to AC proportional to value and to frequency (we say 'impedance' rather than 'resistance' here)
- Measured in "henrys" a henry is a lot, we normally use micro and milli henrys

- Come in lots of types
- Expensive, difficult to buy/use
- Physically big
- There are issues with stray magnetic fields

- Used for three main things:
 - Blocking AC voltages
 - Smoothing AC from DC rails
 - Frequency sensitive circuits

- An ideal inductors has 0 resistance
- Real world always has resistance current changes occur at a rate proportional to the R and L in a circuit
- Click on the "inductor" demo
- Now look at the "AC response" demo see how the voltage lags the current

- You calculate the AC impedance values of inductors in series by adding the values together
- The rules for inductors in parallel is the same as for resistors in parallel

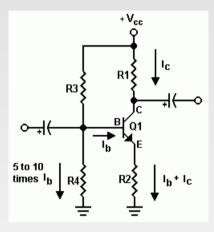

- When the current through an inductor is turned off the magnetic field collapses – it induces a voltage that can rise to much higher than the initial voltage – these can damage circuits
- Those sparks you see on switches when you turn motors and other inductive loads off are caused by this

Duality

- Capacitors and inductors seem to have similar but opposite behaviors
- AC impedance goes up with frequency in inductors and down in capacitors
- Voltage and current phase shifts are opposite
- This is very useful
- Try the "parallel resonance", "band-pass", "notch", "Twin-T" and "crossover" demos
- Caps are usually much cheaper and easier to use than inductors – we prefer to use them

Bipolar Transistors

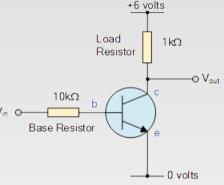
Bipolar transistors


- A small current flowing between the base (left) and emitter (the one with the arrow) terminals causes a much larger current to flow between the collector and emitter
- Positive current always flows thru the arrow

Bipolar Transistors

- The ratio of base to collector current (the gain) flowing depends on a bunch of things (no math remember)
- In a small range of base currents the gain is pretty much linear (without distortion)
- we often set a default DC bias on the base to put it in the middle of this range then introduce AC through a capacitor

Example – AC linear amplifier


R3/R4/R2 set the base DC current

- R1/R2 is the output DC load (collector current)
- AC signals are inserted and extracted with the caps

Example – switch mode transistor

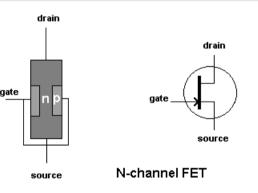
 If we're switching DC signals we ignore any issues around getting the transistor to act linearly

- In this case applying a large voltage to Vin will cause enough current to flow to turn the transistor all the way on, it will act as if it has close to 0 resistance
- Look at the 'switch' demo

NPN vs. PNP

- Bipolar transistors come in 2 flavours NPN and PNP
- All the examples we've seen so far are NPN transistors
- PNP transistors act in a mirror way interacting with respect to the emitter and the +ve power rail as NPN transistors interact with ground.
- (NPN transistors tend to be slightly cheaper than PNP transistors)

Power amplifiers


- Sometimes we use a symetric NPN/PNP pair of transistors
- Look at the example "Simple Push-Pull Follower, with Distortion"
- And then "Improved Push-Pull Follower"

Final example

- Finally something that pulls lots of stuff together
- Look at the example "Astable Multivibrator (Oscillator)"
- Can you see how it works? it uses RC charging delays to turn on switching transistors

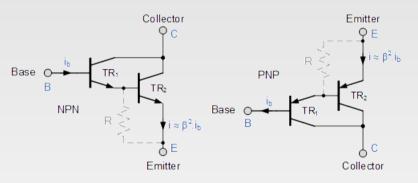
Field Effect Transistors

 FETs work differently from bipolar transistors – they are controlled by a voltage between their gate and drain terminals (rather than a current between base and emitter)

 Applying the voltage causes the channel between the source and drain to change size and the amount of current flowing to change

FETs

- You use them in all the same sorts of circuits you use bipolar transistors in
- They have linear regions for analog
- They make good switching transistors
- Gate capacitance can be an issue even though they are voltage driven device you may need to inject a lot of current to get them to switch
- Gates can be static sensitive


- They are the basis of most modern digital logic because of their low power consumption and ease of fabrication
- They come in N-channel and P-channel variants – much like NPN and PNP transistors
- Try the MOSFETs 'switch' example

FETs 3

- Modern logic uses complementary FETs
- Try the "CMOS inverter" example
- The "CMOS Inverter (w/capacitance)" example models real world gate capacitance
- The "CMOS Inverter (slow transition)" shows how we get current switching transients (the source of much of the heat in modern digital chips

Darlington transistors

 Darlington transistors are used when you need high gain switching (ie driven by a really low current)

- They are in essence two transistors tied together
- You can make your own